人类活动识别(Har)是一个正在进行的研究主题。它具有医疗支持,体育,健身,社交网络,人机界面,高级护理,娱乐,监控以及列表的应用。传统上,电脑视觉方法用于Har,它具有许多问题,例如保密或隐私,环境因素的影响,流动性,更高的运行成本,闭塞等。最近出现了使用传感器,尤其是惯性传感器的新趋势。使用传感器数据作为传统计算机视觉算法的替代方案存在若干优点。在文献中记录了计算机视觉算法的许多局限,包括利用传感器数据的深度神经网络(DNN)和机器学习(ML)方法的研究。我们使用智能手机的惯性传感器数据检查并分析了人类活动识别的不同机器学习和深度学习方法。为了确定哪种方法最适合此应用。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems. A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on images with significant down-scaling. Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework. We demonstrate its superior learning capabilities by generating $28 \times 28$ pixels grey-scale images without dimensionality reduction or classical pre/post-processing on multiple classes of the standard MNIST and Fashion MNIST datasets, which achieves comparable results to classical frameworks with 3 orders of magnitude less trainable generator parameters. To gain further insight into the working of our hybrid approach, we systematically explore the impact of its parameter space by varying the number of qubits, the size of image patches, the number of layers in the generator, the shape of the patches and the choice of prior distribution. Our results show that increasing the quantum generator size generally improves the learning capability of the network. The developed framework provides a foundation for future design of QGANs with optimal parameter set tailored for complex image generation tasks.
translated by 谷歌翻译
Machine Learning (ML) software has been widely adopted in modern society, with reported fairness implications for minority groups based on race, sex, age, etc. Many recent works have proposed methods to measure and mitigate algorithmic bias in ML models. The existing approaches focus on single classifier-based ML models. However, real-world ML models are often composed of multiple independent or dependent learners in an ensemble (e.g., Random Forest), where the fairness composes in a non-trivial way. How does fairness compose in ensembles? What are the fairness impacts of the learners on the ultimate fairness of the ensemble? Can fair learners result in an unfair ensemble? Furthermore, studies have shown that hyperparameters influence the fairness of ML models. Ensemble hyperparameters are more complex since they affect how learners are combined in different categories of ensembles. Understanding the impact of ensemble hyperparameters on fairness will help programmers design fair ensembles. Today, we do not understand these fully for different ensemble algorithms. In this paper, we comprehensively study popular real-world ensembles: bagging, boosting, stacking and voting. We have developed a benchmark of 168 ensemble models collected from Kaggle on four popular fairness datasets. We use existing fairness metrics to understand the composition of fairness. Our results show that ensembles can be designed to be fairer without using mitigation techniques. We also identify the interplay between fairness composition and data characteristics to guide fair ensemble design. Finally, our benchmark can be leveraged for further research on fair ensembles. To the best of our knowledge, this is one of the first and largest studies on fairness composition in ensembles yet presented in the literature.
translated by 谷歌翻译
Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.
translated by 谷歌翻译
Data scarcity is a notable problem, especially in the medical domain, due to patient data laws. Therefore, efficient Pre-Training techniques could help in combating this problem. In this paper, we demonstrate that a model trained on the time direction of functional neuro-imaging data could help in any downstream task, for example, classifying diseases from healthy controls in fMRI data. We train a Deep Neural Network on Independent components derived from fMRI data using the Independent component analysis (ICA) technique. It learns time direction in the ICA-based data. This pre-trained model is further trained to classify brain disorders in different datasets. Through various experiments, we have shown that learning time direction helps a model learn some causal relation in fMRI data that helps in faster convergence, and consequently, the model generalizes well in downstream classification tasks even with fewer data records.
translated by 谷歌翻译
Though semantic segmentation has been heavily explored in vision literature, unique challenges remain in the remote sensing domain. One such challenge is how to handle resolution mismatch between overhead imagery and ground-truth label sources, due to differences in ground sample distance. To illustrate this problem, we introduce a new dataset and use it to showcase weaknesses inherent in existing strategies that naively upsample the target label to match the image resolution. Instead, we present a method that is supervised using low-resolution labels (without upsampling), but takes advantage of an exemplar set of high-resolution labels to guide the learning process. Our method incorporates region aggregation, adversarial learning, and self-supervised pretraining to generate fine-grained predictions, without requiring high-resolution annotations. Extensive experiments demonstrate the real-world applicability of our approach.
translated by 谷歌翻译
Using 3D CNNs on high resolution medical volumes is very computationally demanding, especially for large datasets like the UK Biobank which aims to scan 100,000 subjects. Here we demonstrate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across axial, sagittal and coronal slices) of the 3D volumes leads to reasonable test accuracy when predicting the age from brain volumes. Using our approach, one training epoch with 20,324 subjects takes 40 - 70 seconds using a single GPU, which is almost 100 times faster compared to a small 3D CNN. These results are important for researchers who do not have access to expensive GPU hardware for 3D CNNs.
translated by 谷歌翻译
National Health and Nutritional Status Survey (NHANSS) is conducted annually by the Ministry of Health in Negara Brunei Darussalam to assess the population health and nutritional patterns and characteristics. The main aim of this study was to discover meaningful patterns (groups) from the obese sample of NHANSS data by applying data reduction and interpretation techniques. The mixed nature of the variables (qualitative and quantitative) in the data set added novelty to the study. Accordingly, the Categorical Principal Component (CATPCA) technique was chosen to interpret the meaningful results. The relationships between obesity and the lifestyle factors like demography, socioeconomic status, physical activity, dietary behavior, history of blood pressure, diabetes, etc., were determined based on the principal components generated by CATPCA. The results were validated with the help of the split method technique to counter verify the authenticity of the generated groups. Based on the analysis and results, two subgroups were found in the data set, and the salient features of these subgroups have been reported. These results can be proposed for the betterment of the healthcare industry.
translated by 谷歌翻译
Large annotated datasets are required to train segmentation networks. In medical imaging, it is often difficult, time consuming and expensive to create such datasets, and it may also be difficult to share these datasets with other researchers. Different AI models can today generate very realistic synthetic images, which can potentially be openly shared as they do not belong to specific persons. However, recent work has shown that using synthetic images for training deep networks often leads to worse performance compared to using real images. Here we demonstrate that using synthetic images and annotations from an ensemble of 10 GANs, instead of from a single GAN, increases the Dice score on real test images with 4.7 % to 14.0 % on specific classes.
translated by 谷歌翻译